Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.
نویسندگان
چکیده
Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.
منابع مشابه
Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering
Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...
متن کاملChimeric peptides of statherin and osteopontin that bind hydroxyapatite and mediate cell adhesion.
Extracellular matrix proteins play key roles in controlling the activities of osteoblasts and osteoclasts in bone remodeling. These bone-specific extracellular matrix proteins contain amino acid sequences that mediate cell adhesion, and many of the bone-specific matrix proteins also contain acidic domains that interact with the mineral surface and may orient the signaling domains. Here we repor...
متن کاملLayer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks.
A three-dimensional (3D) microfluidic network plays an important role in engineering thick organs. However, most of the existing methods are limited to mechanically robust synthetic biomaterials and only planar or simple microfluidic networks have been incorporated into soft natural biopolymers. Here we presented an automatic layer-by-layer micromolding strategy to reproducibly fabricate 3D mic...
متن کاملPrimate mandibular reconstruction with prefabricated, vascularized tissue-engineered bone flaps and recombinant human bone morphogenetic protein-2 implanted in situ.
Several studies have validated successful mandibular reconstruction with prefabricated tissue-engineered bone flaps and recombinant human bone morphogenetic protein-2 (rhBMP-2) implanted in situ. Whether rhBMP-2 applied with the prefabrication technique enables faster ossification of mandibular defects than rhBMP-2 applied in situ is unknown. We aimed to compare mandibular reconstruction with p...
متن کاملModeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors.
Osteogenetic microenvironment is a complex constitution in which extracellular matrix (ECM) molecules, stem cells and growth factors each interact to direct the coordinate regulation of bone tissue development. Importantly, angiogenesis improvement and revascularization are critical for osteogenesis during bone tissue regeneration processes. In this study, we developed a three-dimensional (3D) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 15 20 شماره
صفحات -
تاریخ انتشار 2015